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Tunable Holstein model with cold polar molecules
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We show that an ensemble of polar molecules trapped in an optical lattice can be considered as a controllable
open quantum system. The coupling between collective rotational excitations and the motion of the molecules in
the lattice potential can be controlled by varying the strength and orientation of an external dc electric field as well
as the intensity of the trapping laser. The system can be described by a generalized Holstein Hamiltonian with
tunable parameters and can be used as a quantum simulator of excitation energy transfer and polaron phenomena.
We show that the character of excitation energy transfer can be modified by tuning experimental parameters.

DOI: 10.1103/PhysRevA.84.051401

Introduction. Many important biological processes involve
energy transfer between complex molecules in mesoscopic
aggregates [1,2]. Energy can generally be transferred inco-
herently via direct two-molecule interactions or through the
emergence of collective coherence described by excitons [3].
Incoherent energy transfer results from the interaction of exci-
tons with phonons. It is a highly debated open question whether
exciton-phonon interactions conspire to ensure the most effi-
cient and unidirectional energy transfer in biological systems
[4-6]. The exciton-phonon interactions can be described by
a Holstein model [7,8]. It is difficult to calculate numerically
the full energy spectrum for this polaron model in a complete
range of interaction parameters [9]. Therefore, it is necessary
to design an experimentally accessible many-body quantum
system that would be described by the Holstein Hamiltonian
with tunable parameters and arbitrary dimensionality. Such a
system could be used for quantum simulation of excitation
energy transfer (EET) in complex molecular aggregates and
polaron phenomena in general.

There is currently growing interest in using ultracold
atoms trapped on an optical lattice for quantum simulation
of condensed matter physics [10,11]. Ultracold atoms offer
the possibility of designing systems that are well described by
model Hamiltonians such as the Bose-Hubbard Hamiltonian
[12]. Tt was recently shown that polar molecules trapped
on an optical lattice provide new possibilities for quantum
simulation due to the presence of long-range dipole-dipole
interactions [13-15]. Here, we consider the interaction of
rotational excitons with phonons in an ensemble of ultracold
polar molecules trapped in an optical lattice. We show that,
although the translational motion of molecules is largely
determined by the intensity of the trapping laser, the dipole-
dipole interaction can be made large enough to couple the
dynamics of rotational excitons with the lattice vibrations. We
demonstrate that by tuning the trapping laser intensity and an
applied dc electric field, the strength of the exciton-phonon
coupling can be controlled, and that the character of EET can
be modified dynamically from coherent to incoherent.

Molecular crystal Hamiltonian. We consider an array of
'Y polar molecules in the rovibrational ground state, trapped
in a 3D optical lattice with one molecule per lattice site and
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no tunneling of molecules between sites [11,12]. Trapping of
'Y diatomic molecules on an optical lattice has recently been
demonstrated [16—18]. For the lowest bands of the periodic
lattice potential, molecules vibrate harmonically around the
equilibrium positions R; [10,12].

The trapping strength of the optical lattice is one experimen-
tal parameter to control the system. Another parameter can be
introduced by applying a dc electric field E. In a weak dc field,
the rotational ground state |g) ~ a|N = 0,My = 0) + b|N =
1,My = 0) and the excited state |e¢) &~ b|N = 0,My = 0) —
a|lN = 1,My = 0) constitute an isolated two-level system
[14,15]. The field-free rotational states | N, My ) are eigenstates
of the rigid rotor Hamiltonian Hz = B, N2, where B, is the
rotational constant. The states |g) and |e) are eigenstates of
the Hamiltonian HdC = HR —d - E, where d is the electric
dipole operator. The coefficients @ and b are functions of
the dc field strength E. The electric dipole-dipole interaction
\71(13 ,I ;) couples the rotational states of molecules in different
lattice sites. For lattice site separations a; ~ 500 nm and
molecules with a permanent dipole moment d > 1 D, the
characteristic energy of the dipole-dipole interaction V,; =
d*/a; is a few tens of kHz. In the two-molecule subspace S =
{lg.g).1g.e),le,g)}, the dipole-dipole operator VI(r,,r,) has
the following matrix elements: V%% = (gi-gj1Vilgi.g)), ViE =
(e,-,gj|I/I|ei,gj), and J;; = (g,,ej|VI|e,,g]). These mtegrals
can be evaluated as in Ref. [19]. Vgg can be written as
Vgg Ug/Iri — ;3.

An ensemble of polar molecules in an optical lattice can be
represented by a Hamiltonian of the form H= Flph + ﬁex +
H,.. The first term,

A=) - P Y v = Zhwk vl s, (D)

i i,j>i

describes phonons associated with the oscillatory motion of
the molecules in the lattice potential V,(r;,r;) = ma)(z)(r; —
R/)?/2 + Ug/Ir; — r;|>. The first contribution to V, depends
on the intensity of the trapping laser that determines the
trapping frequency wo [10] and the molecular mass m.
The second term in Eq. (1) depends on the strength of
the dipole-dipole interaction and couples the motion of
molecules in different sites. The operator &,:U creates a phonon
in mode k with polarization v = x,y,z. A competition between
the laser trapping force f; o« mw and the dipole-dipole force
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Jaa x Uy /ai determines the phonon frequency wy,,. For ex-
ample, for a homogeneous 1D array w; = wo+/1 + 120y (k),
where p = (Ug/aZ)/ma)g and y (k) = Zj>0[1 — cos(jk)1/j3,
with k£ within the first Brillouin zone. For finite arrays, the
phonon frequencies are obtained from the eigenvalues of the
force constant matrix J given by the Hessian of the lattice
potential V =} j Ve(ri.r;) [20]. The phonon spectrum in
optical lattices is gapped for any value of p, i.e., oy — @y as
k — 0, which resembles optical phonons in solids. In the limit
p <K 1, the spectrum is dispersionless (Einstein oscillators).
This limit can be achieved either by increasing the lattice
depth or by decreasing the dc field strength. In experiments,
the Gaussian profile of the trapping beams usually generates
an additional global harmonic potential Vi(r;) = mwir?/2.
This potential can be included in V,(r;,r;). However, for the
optical lattice potentials considered here V} can be neglected
since wy, /wy < 1072 [10].

The second term in the total Hamiltonian  describes
collective rotational excitations (excitons) and is given by
[3,14,21]

Ho = (eee + D)BIBi + > 1Bl B;. )
i i j#i

In the present work, we neglect nonlinear exciton-exciton
interactions, which is a good approximation for a small number
of rotational excitations. The transition operator BJ = |e;){gil
creates a rotational excitation |g) — |e) in site i. The first term
in Eq. (2) contains the excitation energy at each site, which is
a sum of the single-molecule rotational splitting €., and the
site-dependent shift D; = )" i Dij due to the dipole-dipole
interaction between molecules, where D;; = Vij.g — Vlfg The
second term in Eq. (2) describes the hopping of the rotational
excitation between sites. The integrals D;; and J;; in Eq.
(2) are evaluated for molecules fixed at their equilibrium
positions R;.

The final contribution to the system Hamiltonian 7 is the
exciton-phonon interaction. This effective coupling between
internal and translational degrees of freedom of the molecules
can be written as

Ay = Zg’b“,.(&,fv +a,) B! B;
ki

+3 3 gh@l, +aw BB G

ki j#i

which derives from the Taylor expansion of the integrals D;;
and J;; in Eq. (2) up to linear order with respect to the small
variation of the relative distance ér;; from its equilibrium
value, due to the motion of the molecules in their local

potentials. The exciton-phonon coupling parameters g’g’, and

g’}‘j can be obtained analytically from the gradient of the

dipole-dipole potential and depend on the phonon mode (k,v).
For finite arrays, the mode dependence can be obtained from
the eigenvectors of the force constant matrix F. The first
term in Eq. (3) represents phonon-modulated site energies,
proportional to Dijazl, and the second term corresponds to
phonon-modulated hopping of an excitation, proportional to
J; ,-a;l. Although the energy shift D;; is a small perturbation
to the rotational spectrum, i.e., D;; < €., its fluctuation with
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the motion of the molecules in their local potentials can lead
to dynamical localization of excitons [3,5].

The system Hamiltonian H in Egs. (1)-(3) constitutes
a generalized polaron model. In the limit gj’ > g’};, it
corresponds to the standard Holstein model [7,8], extensively
used to study energy transfer in molecular crystals and
photosynthetic complexes [5,6], polaron physics in solids [22],
and, since recently, quantum information processing in dipolar
gases [21]. In the opposite limit g’gj < g’}”/ the Hamiltonian
corresponds to the Su-Schrieffer-Heeger (SSH) model of
particle-boson coupling, introduced to describe electrons in
one-dimensional chains of polyacetylene [23,24]. It is easy
to include additional effects such as the anharmonicity of
the optical lattice potential [25], quadratic exciton-phonon
coupling [26], and exciton-exciton interactions [3] in the
Hamiltonian.

A similar polaron model H was used in Ref. [21] to
describe 2D self-assembled crystals of polar molecules in
the context of quantum-information processing. Quasi-2D
crystals are predicted to form at temperatures 7 ~ 10 nK,
when the molecular kinetic energy is smaller than V,. A strong
transverse confinement and a dc electric field perpendicular to
the crystal plane are needed to stabilize the crystal against
attractive dipole-dipole interactions. Self-assembled crystals
exhibit acoustic phonons and the exciton-phonon interaction
is always strong due to the presence of low-frequency
modes. These constraints limit the range of the Hamiltonian
parameters (J,D,g%.g%) that can be explored with such
systems. In the system proposed here, molecules are stabilized
against collisional losses by the optical lattice potential for any
orientation of the dc electric field, and for any dimensionality.
In addition, the coupling parameters can be tuned in a much
wider range of values, as demonstrated below.

Tunable exciton-phonon coupling. We now specialize our
discussion to a finite 1D array of polar molecules. Effective
lower dimensional arrays in a 3D optical lattice can be
generated when the dipole-dipole interaction is significant
along one or two axes of the lattice only. We consider the
interaction of a single exciton with harmonic phonons.

The dc electric field modifies the single-molecule states |g)
and |e), and therefore the value of the dipole-dipole couplings
Jio, V{5, and V% [14]. This is shown in Fig. 1(a) for a dc
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FIG. 1. (Color online) Nearest-neighbor couplings Ji, (solid
line), Dy, (dashed line), and V}5 (dot-dashed line). (a) Dependence
on the dc field strength parameter A = dE/B, for adc field E = EZ
perpendicular to the one-dimensional array. (b) Dependence on the
angle 6 between the electric field and the array, for . = 1. Energy in
units of Vg = d*/a;, where d is the permanent dipole moment and
ay is the lattice constant. B, is the rotational constant of the molecule.
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field perpendicular to the axis of the array. The magnitude
of Ji, decreases with increasing field strength, whereas Dy,
and V% increase. For large dc fields, Eq. (3) reduces to the
Holstein polaron model plus a small correction due to the finite
value of g;,,. In the limit of weak dc fields, Dy, and V5 are
vanishingly small due to parity selection rules, and Eq. (3)
reduces to the SSH polaron model with Einstein phonons. The
values of the dipole-dipole matrix elements also depend on the
angle 6 between the dc electric field and the molecular array.
For our chosen rotational subspace with projection My = 0
along the electric field axis, the parameters Dy, Ji2, and V5
are proportional to (3 cos? @ — 1) and vanish for @ ~ 54.7°, as
shown in Fig. 1(b).

The strength of the exciton-phonon coupling can be con-
trolled by tuning the trapping laser intensity and the dc electric
field. The coupling constants in Eq. (3) can be written as
8aij X /(1/mwy)(A12/a), for A = D, J. In order to quantify
the strength of this coupling for realistic trapping conditions,
we analyze the eigenvalues of the Holstein Hamiltonian for a
given molecular species in a finite 1D array. We diagonalize the
total Hamiltonian numerically for an array of o molecules
in the site basis |g1,...,¢;,...,&)|V1,V2, ...,Vs), Where vy
is the occupation number of the phonon mode k. The phonon
basis is truncated by including states with up to a given phonon
occupation Vp.x. The value of vy, is increased iteratively
until the calculated observable is converged. We partition the
Hamiltonian as H = Hy + Hin, where Hy = Ho + I:Iph. The
ground-state energy E, of the noninteracting Hamiltonian H,
is chosen as a reference. Any interaction between rotational
excitons and the lattice vibrations of the molecules shifts
the ground state E, toward lower energies. As an illustrative
example, we show in Fig. 2 the shift AE, for a finite array of
LiCs molecules (d = 5.5 D [27]) separated by a; = 400 nm,
as a function of the optical lattice trap frequency wy. Each
curve corresponds to a different field strength E < 10kV /cm.
For small trapping frequencies (weaker lattices), we find
AE,; > Jip, which is a signature of strong coupling [8]. The
strength of the exciton-phonon coupling is larger for a dc field
parallel to the array than for any other field orientation.

Application to energy transfer in a phonon bath. One of the
possible applications of a tunable Holstein Hamiltonian using
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| L | |
20 40 60 80
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| L | L | ——
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FIG. 2. (Color online) Polaron shift AE, as a function of the
trapping frequency wy for an array of 10 LiCs molecules separated
by 400 nm. Curves are shown for electric fields of 9 kV /cm (solid
line), 2 kV/cm (dashed line), and 0.6 kV/cm (dotted line). Panels
(a) and (b) correspond to a field perpendicular and parallel to the
array, respectively. In panel (a) we have |[AE,| > Jj; = 6.73 kHz,
for E =9 kV/cm and wy/2m < 20 kHz, which is a signature of
strong exciton-phonon coupling.
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cold polar molecules is the simulation of excitation energy
transfer processes (EET) that occur in molecular crystals and
light-harvesting complexes at room temperature [1,2,5,6,28].
For example, let us consider two LiCs molecules in an
optical lattice with a; =400 nm and trapping frequency
wp/2mw = 10 kHz, in a dc field of 10 kV/cm perpendicular
to the intermolecular axis. The two normal modes of lattice
vibration have frequencies w; = wy and w; = 2.8wy. The
lower frequency mode does not couple to excitons because
it does not change the relative distance between molecules.
The Hamiltonian parameters for the higher frequency mode
are gp,,/h = 12.7 kHz and g,/ h = —2.33 kHz. This gives
the ratio gp,,/Ji2 ~ 2, which can also be found in the Fenna-
Mathews-Olson photosynthetic complex, where electronic ex-
citations are believed to be locally coupled to phonons at each
site [5,6]. For a weak dc field E = 0.5 kV/cm, the first term
in Eq. (3) is negligible and nondiagonal coupling dominates
(84,,/J12 = 0.6, for wy/2mw = 10 kHz), which may allow for
tests of the role of spatial nonlocal phonon correlations in the
dynamics of EET [29].

In order to model rotational EET using the generalized
polaron Hamiltonian in Egs. (1)-(3), we define an initial
wave function |W(0)) describing the coupled exciton-phonon
system, using the product basis described above. We prop-
agate the time-dependent Schrodinger equation, using the
Hamiltonian 7, and construct the total density matrix p(t) =
|W(t))(W(?)| at each time step. We then obtain the reduced
density matrix in the exciton subspace pg(t) = Tryin{0(?)}
by tracing over the states in the truncated phonon basis.
The diagonal elements of the reduced density matrix are
the time-dependent probabilities p;(¢) for a molecule in site
i to be in the rotational excited state |e;). We apply this
procedure to a 1D array of five LiCs molecules separated
by 400 nm, in a weak dc field E = 0.5 kV/cm perpen-
dicular to the array. The rotational excitation is initially in
molecule 1. Single-site excitation and probing of rotational
states can be achieved by applying an electric field gradient
as described in Ref. [30]. The phonon bath has initially
zero temperature. In Fig. 3, we show the dynamics of
the excitation at site 1 for different trapping frequencies
wp/2m, keeping E constant. In Fig. 3(a) we set wy — o0,
thereby neglecting the coupling to phonons. In this limit, the
excitation energy oscillates coherently between the molecules
of the array [1], with a transfer time between adjacent sites
T2 = h/|J12| ~ 10 us. When the exciton-phonon coupling
is turned on, by decreasing the trapping frequency in this
case, the transport of the excitation is suppressed due to a
competition between the exciton-phonon interactions and the
excitonic energy transfer. When the exciton-phonon coupling
is strong enough, all the site populations p;(t) approach
an equilibrium value. This is shown in Fig. 3(b), where
only the population in site 1 is presented for simplicity.
We obtain a similar behavior when wy is kept constant and
the dc field strength is dynamically tuned from weak to
strong.

Discussion. We have shown that the translational and
rotational states of polar molecules trapped in an optical
lattice can interact in the presence of a dc electric field. This
interaction is described by a generalized polaron model with
tunable parameters. All the terms in the Hamiltonian can be
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FIG. 3. (Color online) Excitation energy transfer in an array of
five LiCs molecules in a dc electric field perpendicular to the array.
(a) Evolution of the excitation probability p,(¢), when no phonons are
present. (b) The same as in (a), but with phonons in an optical lattice
with trapping frequency vy = wo /27 varying in time as indicated in
the inset. The field strength is 0.5 kV /cm.

dynamically tuned by varying the dc electric field or the lattice
laser intensity.

These results suggest the possibility of using cold polar
molecules for quantum simulation of excitation energy transfer
processes that occur at high temperatures in solids and
mesoscopic systems of biological interest [1-3]. Despite the
physicochemical differences between these systems and cold
polar molecules, they are described by the same Hamiltonian,
and it should be possible to use the latter to experimentally
study the role of environmental noise in the efficiency of

RAPID COMMUNICATIONS

PHYSICAL REVIEW A 84, 051401(R) (2011)

quantum transport [5,31,32]. In addition, polar molecules
can also be used to explore the strong coupling regime of
exciton-phonon interaction, which may provide insight into
some of the open questions of polaron physics, such as the
role of the lattice dynamics in the mechanism of high-7,
superconductivity [22].

The interactions of atomic spin states with phonons are
used in experiments with ultracold trapped ions to generate
phonon-mediated gates for quantum computing [33]. Simi-
larly, the interactions of rotational states with lattice vibrations
described in this work can be used to produce novel quantum
gates. The detrimental effects of decoherence can be mini-
mized by increasing the trapping frequency. Phonon-mediated
interactions may also introduce new adjustable parameters
to the spin-lattice Hamiltonians that can be simulated with
ultracold molecules [13,34]. In particular, the controllable
coupling to phonons can be exploited to study the effects
of dynamically tunable decoherence on topologically ordered
states that can be created with ultracold molecules [13]. In
summary, the proposed system may provide an experimental
tool to explore the dynamics of quantum networks whose
essential features are replicated in several areas of condensed
matter physics. The ability to tune the system-environment
coupling dynamically may also stimulate new studies of the
dynamics of open quantum systems.

Note added. Recently, quantum simulation of EET using
superconducting qubits was proposed in Ref. [35].
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